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Abstract

The detection of overlapping community structure in networks can give insight into the structures and func-
tions of many complex systems. In this paper, we propose a simple but efficient overlapping community
detection method for very large real-world networks. Taking a high-quality, non-overlapping partition gen-
erated by existing, efficient, non-overlapping community detection methods as input, our method identifies
overlapping nodes between each pair of connected non-overlapping communities in turn. Through our anal-
ysis on modularity, we deduce that, to become an overlapping node without demolishing modularity, nodes
should satisfy a specific condition presented in this paper. The proposed algorithm outputs high quality
overlapping communities by efficiently identifying overlapping nodes that satisfy the above condition. Ex-
periments on synthetic and real-world networks show that in most cases our method is better than other
algorithms either in the quality of results or the computational performance. In some cases, our method is
the only one that can produce overlapping communities in the very large real-world networks used in the
experiments.
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1. Introduction

As a mathematical tool, a network can represent many complex systems effectively. For example, a social
network represents relationships among people, biological networks represent interactions of molecules or
proteins and the WWW is formed of web pages and hyperlinks. These networks have some common features,
such as power law degree distribution, clustering and community structures. Communities indicate groups
of nodes such that nodes within a group are much more connected to each other than to the rest of the
network. Although there is no accurate definition of a community, it exists in various systems, such as
organizations in social networks, protein complexes in biological networks or a group of web pages with
similar topics on the WWW.

Detecting communities is very important to understand the structure, function and evolution of various
systems [1]. To solve this problem, many methods have come forth in recent years, such as betweenness-
based methods, similarity-based methods, modularity-based methods, and some other methods based on
information theory and random walk. One can refer to Ref. [2] for a detailed review about these methods.
Most of the above methods only detect non-overlapping communities, i.e., a node can only belong to one
community; however, in some cases, a node may belong to multiple communities. For example, a researcher
may belong to more than one research group, or a protein may exist in multiple complexes.
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Taking this situation into account, many algorithms output communities that can overlap [3, 4, 5, 6, 7, 8].
CFinder [3] detects communities through k-clique percolation. Because a node may belong to multiple k-
cliques, this method guarantees communities can overlap. LFM [4] is a local algorithm based on local
optimization of a fitness function to find overlapping communities that are revealed by peaks in the fitness
histogram. COPRA [5] employs a label propagation technology to find overlapping communities, and in its
results each node can belong to v communities at the most. Here, v is a tunable parameter. GCE [6] is a two
steps algorithm. In the first step, the algorithm identifies distinct cliques as seeds and expands these seeds
by greedily optimizing a local fitness function in the second step. OSLOM [7] is a method based on the local
optimization of a fitness function expression the statistical significance of clustering with respect to random
fluctuations. Another kind of methods to find overlapping communities is to cluster links, such as Ref. [8].
The first step of this method is to construct a line graph of the original network. Then a non-overlapping
community detection algorithm can be used to find link communities. Since vertices can belong to multiple
links, it guarantees communities can overlap with each other.

Thanks to developments in computing and communications technology, the typical size of large-scale
networks, such as user networks of Facebook, mobile phone networks or web networks now count in millions
or even billions of nodes.The above overlapping community detection methods have advantages in different
aspects, but until now, we find that all these methods suffer a common problem of high computational
complexity. Although some methods can process large sparse synthetic networks, few current algorithms
can produce overlapping communities on huge real-world networks. Some features of real-world networks
might not be contained in synthetic networks. As a result, such large-scale real-world data sets demand
new, efficient methods.

From earlier methods, such as the GN algorithm [9], which can only process small networks, to current
methods, such as the Infomap [10], BGLL [11], RAK [12] and RG [13], which successfully find communities
in very large networks, non-overlapping community detection methods have reached a high level despite
the quality or computational performance [14]. After careful inspection of modularity, we deduce that
for overlapping community detection, high-quality, non-overlapping community structures almost already
contain basic community structures, and we only need to consider some nodes that satisfy a certain condition.
Based on this deduction, we plan to propose a fast overlapping community detection method for huge real-
world networks.

The rest of this paper is organized as follows. Section 2 explains the design of our new overlapping
community detection algorithm. Experimental results of synthetic and real-world networks are shown in
section 3. Conclusions appear in section 4.

2. Method

2.1. Definitions

In this paper, we just consider single-edge networks, in which all links must have two different end points.
Given an unweighted and undirected graph G(V,E), V represents the node set, E represents the edge set
and Ci represents the node set of community i.

Definition 1. For a given node v ∈ V , N(v) = {u|(u, v) ∈ E }, we call N(v) the set of all neighbors of
v.

Definition 2. For a given node v ∈ Ci, Nii(v) = N(v) ∩ Ci, we call Nii(v) the set of all neighbors of v
in community i, and Nno

ii (v) the set of all non-overlapping neighbors of v in community i.
Definition 3. For a given node v ∈ Ci and a community j, Nij(v) = N(v) ∩ Cj , we call Nij(v) the set

of all neighbors of v in community j, and Nno
ij (v) the set of all non-overlapping neighbors of v in community

j.
Definition 4. For two given communities Ci and Cj , Bij = {v|v ∈ Ci,∃u ∈ Cj and (v, u) ∈ E} is the

boundary node set of community i connecting to community j.
Definition 5. Let CG(CV,CE) be the community graph. CV is the set of communities and CE =

{(Ci, Cj)|∃(u, v) ∈ E, u ∈ Ci, v ∈ Cj}, is the edge set of CG.
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Figure 1: A diagram of boundary node p between two non-overlapping communities.

2.2. The Condition for Overlapping Nodes

Until now, no one has given a comprehensive definition of overlapping nodes. A typical way to define
overlapping nodes is to declare that in the output of overlapping community detection algorithms, nodes
with multiple community labels are overlapping. In this paper, our rule to judge overlapping nodes is that,
when nodes in the generated partition become overlapping nodes, the quality of the community structure
does not decrease.

To assess the quality of the community structures, a quality function that evaluates the relative density
of edges within communities and between communities, such as Newman’s modularity Q [15] and Shen’s
overlap modularity EQ [16], is usually used.

Q =

nc∑
c=1

[
lc
m

− (
dc
2m

)2
]
. (1)

Here, nc is the number of communities, lc is the number of edges joining vertices of community c, dc is the
sum of the degrees of nodes of c and m is the number of edges of the networks.

EQ =
1

2m

∑
i

∑
v∈Ci,w∈Ci

1

OvOw

[
Avw − kvkw

2m

]
, (2)

where Ov and Ow represent the number of communities to which node v and w belongs, and kv and kw are
the degree of node v and w, respectively.

In most cases, high-quality, non-overlapping partitions already contain the basic community structures
of networks. For the problem of overlapping community detection, we can find overlapping nodes on the
basis of a generated partition to form overlapping communities.

Based on the theory of modularity, for a high-quality, non-overlapping partition, moving a node from its
community to any other community should not cause obverse increment in the modularity. From this point,
we will discuss the condition for overlapping nodes as follows.

First, we will analyse a simple case. As shown in Fig. 1, p is a boundary node between disjoint community
C1 and C2. The total node degree of community C1 and C2 are dc1 and dc2 , respectively. We let l1 = N11(p)
and l2 = N12(p). If we move node p from community C1 to C2, the change of modularity for C1 is:

dQ1 = − l1
m

+
kp(2dc1 − kp)

(2m)2
. (3)

The change of modularity for C2 is:

dQ2 =
l2
m

− kp(2dc2 + kp)

(2m)2
. (4)

If node p becomes an overlapping node between C1 and C2, according to the definition of EQ, we can
get

dEQ =
1

2
(dQ1 + dQ2) =

l2 − l1
2m

+
kp(dc1 − dc2 − kp)

(2m)2
. (5)
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Figure 2: A general diagram of node p with possible overlapping neighbors.

For large-scale networks,
kp(dc1−dc2−kp)

2m2 must be very close to 0. So, we can get Eq.6.

dEQ ≈ l2 − l1
2m

. (6)

Thus, if a boundary node p between two disjoint communities has a balanced number of connections to
each community and we take it as an overlapping node, the modularity of the community structure will not
decrease or will only decrease slightly.

Next, we will give a more general case. As shown in Fig. 2, there are two overlapping communities and
three node sets: A, B and C. B = C1 ∩ C2, A = C1 − B and C = C2 − B. Node p, which belongs to
community C1, connects l1 non-overlapping neighbors in its current community, l2 non-overlapping neighbors
in community C2 and l3 overlapping neighbors between the two communities. If l3 is equal to 0, it becomes
the simple case in Fig.1. If l2 is equal to 0, node p is an inner node. Otherwise, p is a boundary node. In
the general case, if node p becomes an overlapping node between community C1 and C2, the modularity will
change in both communities. For community C1, the change of overlap modularity is

dEQ1 = −1

2

[
l1
m

− kp(2dA − kp)

(2m)2

]
− 1

4

[
l3
m

− 2kpdB
(2m)2

]
. (7)

For community C2, the change of overlap modularity is

dEQ2 =
1

2

[
l2
m

− kp(2dC + kp)

(2m)2

]
+

1

4

[
l3
m

− 2kpdB
(2m)2

]
. (8)

The sum of the two part is

dEQ = dEQ1 + dEQ2 =
l2 − l1
2m

+
kp(dA − kp − dC)

(2m)2
. (9)

where dA, dB and dC are the total degrees of all nodes in each node set.
According to the above assumption, still we can get

dEQ ≈ l2 − l1
2m

. (10)

Thus, we obtain the Condition for Overlapping Nodes (CON) as shown in Eq.10. This deduced condition
provides the main evidence for our following design of overlapping community detection algorithm.

2.3. CON-based overlapping community detection algorithm

Based on the deduced Condition for Overlapping Nodes, we propose an efficient, overlapping community
detection algorithm, named CONA1 as shown in Algorithm 2. CONA has two steps for each pair of

1The implementation of CONA is avilable for download on the webpage http://dev.bjtu.edu.cn/cona/
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Figure 3: An example of the two procedures of adding and deleting overlapping nodes. φ = 0.55

communities. In the first step it identifies overlapping nodes from the boundary node set. After that inner
overlapping nodes will be detected.

For boundary nodes, from the above equation, we can see if l2 is larger than l1, they can be overlapping
nodes. However, since one can only pursue a local maximum modularity, the condition of Eq.10 may be too
strict. Therefore, we give a relaxed index shown in Eq.11. If pij(v) is larger than the threshold parameter φ,
v is recognized as an overlapping node between Ci and Cj . Thus, if node v connects comparatively balanced
number of non-overlapping neighbors in the two communities, even though l2 may be smaller than l1, the
modularity of community structure will not decrease or will only decrease slightly.

pij(v) =
|Nno

ij (v)|
|Nno

ii (v)|
. (11)

For each pair of communities, to find boundary overlapping nodes, CONA will excute the following two
procedures repeatedly as shown in Algorithm 1. The first procedure is to find overlapping nodes one by
one, until there is no node satisfying the condition for overlapping node. Each time we find the node v with
maximum pij . If pij(v) is not less than φ, v will be added to overlapping node set. The second procedure is
to check whether some found overlapping nodes have become non-overlapping nodes for the detection of new
overlapping nodes. In this procedure, we will find and delete the node v with minimum pij in the current
overlapping node set again and again, until pij(v) is not less than the threshold parameter.

Fig. 3 is an example of the above procedures with φ = 0.55. Fig.3 (a) shows two disjoint communities
and four nodes that may become overlapping nodes. Here we assume that other boundary nodes except these
four nodes only have very small pij . In Fig.3 (a), there are three nodes with maximum pij : node 1, node 3
and node 4. Suppose we randomly choose node 1 as the first one to be overlapping node. Thus we get Fig.3
(b). At this time, the node with maximum pij becomes node 2. Node 2 has two non-overlapping neighbors
in the other community and three non-overlapping neighbors in its own community. So p12(2) = 0.67 and
it is larger than p21(3) and p21(4), which are both equal to 0.6. From Fig.3 (c) we can see both node 3 and
node 4 can be overlapping nodes. So we get Fig.3 (d). At this time, no more nodes can be overlapping
nodes.

Then the second procedure starts. p12(1), which is equal to 0.5, is the minimum pij in all current
overlapping nodes between community C1 and C2 and is less than φ. As shown in Fig.3 (e) node 1 is
deleted from overlapping node set. Meanwhile, since node 1 becomes non-overlapping node, the number of
non-overlapping neighbors of node 2 in its own community becomes four, and p12(2) becomes 0.5. So node
2 also becomes non-overlapping node. Since node 1 and 2 become non-overlapping nodes, p21(3) and p21(4)
become larger, and they won’t become non-overlapping nodes.
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When repeating the above two procedures, no membership changes. Thus node 3 and node 4 are the
final boundary overlapping nodes between the two communities.

After the above procedure stops, CONA begins to find overlapping nodes from the inner node set of the
two communities. This phase is very simple. Every inner node without non-overlapping neighbors will be
insert into overlapping node set.

Algorithm 1: Identifying Overlapping boundary nodes

Input: network G(V,E), partition P , community pair Ci and Cj , threshold parameter φ
Output: overlapping boundary node set
setB = Bij ∪Bji;1

flag1 = true;2

while flag1 do3

flag1 = false;4

sort pij of all nodes of current boundary node set setB ;5

if pmax
ij ≥ φ then6

insert the node with maximum pij to setO and delete it from setB ;7

update related variables;8

flag1 = true;9

Go to step 5;10

sort pij of all nodes of current overlapping node set setO;11

if pmin
ij < φ then12

delete the node with minimum pij from setO and insert it to setB ;13

update related variables;14

flag1 = true;15

Go to step 11;16

put all inner nodes of the two communities in setI ;17

foreach node v in setI do18

if (v ∈ Ci and Nno
ii (v) = 0) or (v ∈ Cj and Nno

jj (v) = 0) then19

insert v to setO;20

return setO;21

Algorithm 2: CONA algorithm

Input: network G(V,E), partition P , threshold parameter φ
Output: overlapping communities
compute in and out community degree dii and dij for all nodes, boundary node sets B for each pair of1

communities and community graph CG;
foreach edge (Ci, Cj) in CE do2

call Algorithm 1;3

delete the communities that are totally contained by others;4

To process more efficiently, CONA computes the initial varibles in one-pass scan, including Nii, Nij and
the boundary node sets B for each pair of communities. At the same time, a community graph CG is also
constructed. After that, one can call Algorithm 1 to discovery overlapping nodes for each pair of connected
communities. After identifying overlapping nodes between each pair of communities, there may be some
communities that are contained by others. So the final step of CONA is to delete those totally contained
communities.

2.4. Convergence Analysis

Here, we will analysis the convergence of the phase of detecting boundary overlapping nodes. In this
phase of CONA, two procedures are excuted repeatedly. In the first procedure, non-overlapping nodes may
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Figure 4: A diagram of convergence analysis. P (o) stands for the possibility of being overlapping node and P (no) represents
the possibility of being non-overlapping node.

become overlapping nodes and in the second one, overlapping nodes become non-overlapping nodes. We will
analyse the two cases respectively.

In the first case as shown in Fig.4 (a), when a non-overlapping node v becomes overlapping one, it will
impact two kinds of nodes. For nodes in the same community, P (o), which stands for the possibility of being
overlapping node, will become larger, because l1 in Eq.10 will be smaller than before. While for nodes in
the other community, P (o) will become smaller, because l2 in Eq.10 will be smaller than before. In a further
step, the impact to other nodes will be back to node v. The impact from nodes in the same community are
still positive in P (o). Since two negatives make a positive, the impacts from nodes in the other community
are also positive in P (o).

The situation in Fig.4 (b) is the same with that in Fig.4 (a). When an overlapping node v becomes
non-overlapping one, through the two paths shown in the figure, node v will also get positive impact in
P (no) for both cases. Here P (no) represents the possibility of being non-overlapping node.

Based on the above analysis, we can conclude that there is no oscillation in the procedure of the iterations
for detecting boundary overlapping nodes.

2.5. Complexity Analysis

Suppose there are nc communities and n nodes. Each community has Ci nodes in the initial partition. In
the worst case, all communities connect to each other and all nodes are boundary nodes between communities.
Thus, a pair of communities needs to compute (Ci+Cj)(Ci+Cj−1)/2 times for one iteration, and there are
nc(nc − 1)/2 community pairs that need to be traversed. The whole computational complexity is O(tncn

2)
in the worst case. Here t stands for the average number of iterations for each pair of communities. Since
there is no oscillation, in each iteration at least one overlapping node will be identified. So in the worst case,
t is equal to n, which is the number of nodes of a pair of communities containing all nodes of the network.
Thus, the worst case complexity is O(ncn

3). However, in the real situation of complex networks, it will be
much better for the existence of the following statistical properties of complex networks.

In the first place, a community is a kind of relatively independent structure simply because nodes connect
sparsely between communities. So in most cases, the number of boundary nodes will be much smaller than
the total number of nodes in the two communities. In the second place, when CONA identifies an overlapping
node, the boundary node set will be updated, and many other nodes will be updated to non-boundary nodes.
This possibility will bring a further reduction in the computational complexity. So this procedure will always
converge in a very small number of iterations.

In addition, the statistical characteristics of complex networks show that communities always only con-
nect to a few nearby communities [17]. Thus, the number of community pairs needed to be traversed will be
much smaller than nc(nc−1)/2. That is the reason why we construct the community graph at the beginning
of CONA.

Overall, CONA is very fast in real situations. The experiments in following section will illustrate this
point in detail.
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Table 1: Parameters of LFR synthetic networks for Fig.5 and Fig.6.

Para Fig.5(a)/6(a) Fig.5(b)/6(b) Fig.5(c)/6(c) Fig.5(d)/6(d) Fig.5(e)/Fig.6(e) Fig.5(f)/Fig.6(f)
N 1,000 1,000 1,000 1,000 5,000 1,000
k 10 10 30 10 10 10

kmax 30 30 90 30 30 30
cmin 10 20 10 10 10 10
cmax 50 100 50 50 50 50
µ 0.1/0.3 0.1/0.3 0.1/0.3 0.1/0.3 0.1/0.3 0.1/0.3
On 100 100 100 500 100 100
Om 2 2 2 2 2 4

Table 2: Parameters of LFR synthetic networks for Fig.7-10.

Para Fig.7 Fig.8 Fig.9 Fig.10
N 1,000 1,000-100,000 1,000-1,000,000 5,000
k 6/12 20 6 20-200

kmax 30 80-200 30-300 200
cmin 10/20 20 10-100 k
cmax 50/100 200-1000 100-1,000 500
µ 0.1-0.9 0.1/0.3 0.15 0.2
On 100 N

10 100-1,000 500
Om 2 2 2 2

3. Results

3.1. Methodology

Currently there is almost no real-world benchmark data set for overlapping community detection. There-
fore, it is rather difficult to evaluate the quality of overlapping communities accurately. In this paper, we
adopt two common ways to estimate the quality of the results in experiments.

First, we will test various algorithms on synthetic networks. Recently, Lancichinetti and Fortunato
proposed more realistic, LFR benchmark graphs [18], which have scale-free degree and community size
distributions as well as overlapping communities. On this foundation, Normalized Mutual Information
(NMI) can be used to measure the similarity of the known and found communities. Lancichinetti, et. al.,
gave a variant of the Mutual Information measure, that is extended to handle overlapping communities [4].
We will use this measure from Ref. [4] in the experiments in section 3.2.

The other method is to run community detection algorithms on real-world networks. One problem with
this method is the difficulty of evaluating the found communities using NMI because we usually do not know
the real communities that are present in the original networks. For real networks, we use overlap modularity
to estimate the quality of the results as in [5, 19]. A high value corresponds to good solutions. Although
modularity has some limitations, such as resolution limit [20], landscape problem [21], it is widely used in
the area of community analysis.

The original modularity measure is defined only for non-overlapping communities, whereas some variants
suitable for overlapping communities have been designed in recent years, such as EQ [16], Qov [22] and Qc

[23], which is proved to be equivalent to Qov. For Qov, the strength of the membership to each community
should be given for each node. We assume that each vertex belongs equally to all of the communities of
which it is a member. The f function used for computation of Qov is defined as:

f(x) = 2px− p, (12)

where the value of p is 30, as suggested in Ref. [22]. The detailed definition of Qov is too long to be
introduced here.
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In the experiments in this paper, we use BGLL [11] and Infomap [10] to generate the initial partition.
The parameters of the algorithms used to compare with CONA are as follows. For GCE algorithm, k = 3
and others adopt default values. For LFM algorithm, the value of α is set to 1.0. For COPRA, the value
of v is set to 2. For CFinder, the value of k is also set to 3. To process large networks, OSLOM is
used in its fastest mode, i.e. refining hard partitions generated by BGLL. For link-clustering method [8],
threshold parameters are chosen by the loop program given by its authors. For different networks, although
the best results might correspond to different values of parameters, we will not search for the best values
of the parameters on different networks for all algorithms, including CONA. All implementations of these
algorithms are supported by their authors. The results shown in the following experiments are the average
of ten independent runs.

Because the non-overlapping community detection algorithms that we use in experiments generate high
quality partitions, the original non-overlapping communities have already held relatively high scores on
various quality measures. To show the validity of CONA, we add a random algorithm (RCONA) for
comparison. RCONA finds all boundary nodes in the first step and then selects the overlapping nodes
randomly in the boundary node set. The number of overlapping nodes is set to that identified by CONA.

3.2. Synthetic Networks

In this section, we will test CONA on various LFR synthetic networks. In the first part, experiments
are designed to evaluate the behavior of the CONA algorithm by varying the threshold parameter φ. In the
second and third part, given a fixed threshold parameter, CONA is compared with other algorithms on the
quality of overlapping communities and the computational efficiency.

To construct LFR synthetic networks, ten parameters should be given as shown in Table 1. Here, N
is the number of nodes, k is the average degree, kmax is the max degree, Cmin is the size of the smallest
community, Cmax is the size of the largest community, t1 is the degree exponent, which is equal to 2 in this
paper, t2 is the community size exponent, which is equal to 1 in this paper, µ is the mixing parameter, On

is the number of overlapping nodes and Om is the number of communities to which each overlapping node
belongs.

3.2.1. Experiments on the threshold parameter of CONA

First, to analyze the properties of CONA, we test the effect of varying its threshold parameter on two
groups of LFR synthetic networks. One group has a low mixing parameter equal to 0.1, and the other group
has a high mixing parameter equal to 0.3. For each group, we give six kinds of networks, including networks
with standard property, networks with large communities, networks with high density and networks with
highly overlap in the number of overlapping nodes, networks with large scale and networks with highly
overlap in the number of memberships.

For experiments on the first group of networks, as shown in Fig. 5, not all the values of the threshold
parameter are suitable to generate high-quality overlapping communities. With φ ranging from 0.45 to 0.75,
CONA can bring improvements for almost all kinds of networks in the experiments. At the same time,
CONA can give the best results of all the algorithms used in this experiment in most cases, except for
networks with highly overlap in number of overlapping nodes.

For experiments of the second group of networks, as shown in Fig. 6, the results are similar to those
of the first group. The main difference is that the effective range of the value of the threshold parameter
decreases. Still in most cases, with φ ranging from 0.55 to 0.75, CONA can give the best results for all the
algorithms even for networks with highly overlap. Contrarily, RCONA causes a large decline in the quality
of the results.

The above experimental results show that for networks with different community sizes, densities, scales
or various extents of overlap in both number of overlapping nodes and memberships, when the threshold
parameter φ ranges from 0.55 to 0.65, CONA can effectively convert the non-overlapping communities to
overlapping communities, and the results will always be at least the same as or even better than those
of other methods. Thus, we adopted 0.55 as a fixed experienced value of the threshold parameter for all
following experiments. Although situations in real-world networks may be more complex, the results in the
following experiments looks very good.
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Figure 5: Experimental results on threshold parameter for networks with (a) standard property, (b) large community, (c) high
density, (d) highly overlap in number of overlapping nodes, (e) large scale and (f) highly overlap in number of memberships.
µ=0.1.

3.2.2. Experiments on quality

In this subsection, we test the quality of the overlapping communities generated by CONA and the other
algorithms. Four groups of LFR networks are generated, including sparse networks with small communities
(SS), sparse networks with large communities (SL), dense networks with small communities (DS) and dense
networks with large communities (DL). For each group of networks the mixing parameter µ varies from
0.1 to 0.9. At the same time, we set one hundred overlapping nodes for each network. The addition of
overlapping nodes will make the different performance of various methods appear earlier during the increase
in the mixing parameter comparing with experiments on networks with disjoint communities [14, 5, 6].

In the experiment shown in Fig. 7 (a), Infomap-CONA performs best. GCE and BGLL-CONA come
next. Fig. 7 (b) shows that CONA performs best in all overlapping community detection methods on
sparse networks with large communities. In the results shown in Fig. 7 (c), again Infomap-CONA finds
overlpping communities with the highest NMI. BGLL-CONA and GCE perform second-best in different
ranges of mixing parameter, respectively. Lastly, in Fig. 7 (d), for networks with high density and large
communities, CONA gives the best results once again. LFM and link-clustering method can only give poor
results for all four groups of networks. For OSLOM algorithm, refining the partitions generated by the same
algorithm (BGLL), it never gives better results than those of CONA. In comparison, RCONA decreases the
score of NMI for all networks.

It is also very import to test the quality of results of CONA on larger networks. Fig. 8 shows the results
of CONA on some larger networks. There are two groups of networks with small and large value of mixing
parameter, respectively. In each group, the scales of networks are from 1,000 nodes to 100,000 nodes. At the
same time, some other parameters of LFR networks are adjusted on average in the given ranges. For each
network, we set the number of overlapping nodes to one tenth of number of nodes of the network. From
Fig. 8 we can see that CONA can solve large networks very well. Thus we can conclude taht the network
scale does not obviously affact the performance of CONA.

The above results show that CONA performs very well in producing high-quality overlapping commu-
nities. In some cases, however, when the mixing parameter µ > 0.5, CONA often fails to optimize NMI.
Nevertheless, in these cases, the performance of the other overlapping community detection methods also de-
clines rapidly with an increase in the mixing parameter. Solving this problem for networks with overlapping
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(d)
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Figure 6: Experimental results on threshold parameter for networks with (a) standard property, (b) large community, (c) high
density, (d) highly overlap in number of overlapping nodes, (e) large scale and (f) highly overlap in number of memberships.
µ=0.3.

communities and a high value of mixing parameter might require more effort in the future.

3.2.3. Experiments on computational efficiency

Finally, we experimentally evaluate the speed of CONA on networks of different scales and densities.
In the experiment shown in Fig. 9, we vary the number of nodes N . At the same time, the max node

degree kmax, community size and the number of overlapping nodes are adjusted on average with increasing
N . As analyzed in section 2.5, CONA takes very little time. When processing networks with 1,000,000 nodes,
BGLL-CONA only spends about one hundred seconds. Other two algorithms that can finish in one thousand
seconds for this data are link-clustering method and GCE. Infomap can solve networks with 500,000 nodes,
and based on the partition generated by Infomap, the time CONA costs can almost be ignored. The total
time of Infomap-CONA is a little more than that of COPRA and less than that of CFinder. OSLOM seems
to be the slowest method in this experiment.

Fig. 10 shows the experimental results from various methods for networks with different densities. The
average node degree k is set from 20 to 200, and as it increases, the size of the minimum community will
become larger, which is set as the value of k. We can find that CONA, BGLL and Infomap are not insensitive
to the average node degree, whereas the time expenses of GCE, OSLOM and link-clustering method rise
rapidly with the increment in the average node degree. The performances of the left two algorithms, COPRA
and LFM, are also affected by the average node degree to some extent. Because CFinder even needs more
than one thousand seconds on average for the sparsest networks, it is not compared in this experiment.

The above two experiments show that CFinder, link-clustering, OSLOM and GCE can only solve sparse
large-scale networks. Though COPRA is not affected by the network density very much, it can only process
networks with 500,000 nodes in 1,000 seconds. CONA combining high quality non-overlapping community
detection algorithms is almost the only solution in current methods for overlapping community detection on
large-scale dense networks.
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(a) (b)

(c) (d)

Figure 7: Comparing NMI on (a) SS network, (b) SL network, (c) DS network and (d) DL network.

3.3. Real-World Networks

3.3.1. Experiments on small networks

The karate network [24] is a small benchmark data set, and has been widely used to test community
detection algorithms. This network describes the relationships between persons of a karate club that contains
34 persons and 78 relations and is assembled by Zachary . Due to a contrast between one of the instructors
and the club administrator, the club separated into two groups, that are split up by a dashed line in Fig.
11 and Fig. 12.

BGLL finds four communities in the karate network as shown in Fig. 11 (a). If we recogonized the left
two small communities and right two small communities as two larger communities, the result is almost
correct except for the community membership of node 10. Based on the partition generated by BGLL,
CONA discoveries six overlapping nodes among communities, as shown in Fig. 11 (b). From the result we
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Figure 8: Quality test of CONA on LFR networks with larger scales.
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Figure 10: Runtime results of various methods for networks with different density.
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Figure 11: Application of (a) BGLL and (b) BGLL-CONA to karate network.
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Figure 12: Application of (a) Infomap and (b) Infomap-CONA to karate network.
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Figure 13: Application of (a) BGLL and (b) BGLL-CONA to dolphins network.
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Figure 14: Application of (a) Infomap and (b) Infomap-CONA to dolphins network.
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Table 3: Experimental results for the Ca-hepPh network.

algorithms time Qov EQ
BGLL-CONA 1.33s 0.78 0.63
BGLL-RCONA 1.06s 0.581 0.461
Infomap-CONA 3.83s 0.71 0.581
Infomap-RCONA 3.31s 0.484 0.4

GCE 8.92s 0.524 0.492
COPRA 7.51s 0.538 0.271
LFM 1.37s 0.271 0.268

OSLOM 105.4s 0.589 0.524

can see that node 10, which is misclassified by BGLL, becomes an overlapping node. It means that CONA
fixes a mistake of BGLL, and detects overlapping nodes successfully.

Fig. 12 (a) shows the communities detected by Infomap algorithm. Same with communities detected
by BGLL, most nodes have correct community membership except node 10. Under this partition, nodes
3 and 10 are identified as overlapping nodes by CONA. Once again, CONA corrects a mistake made by a
non-overlapping community detection algorithm and identifies two overlapping nodes successfully.

The dolphins network [25] is another classical benchmark data set. It is a social network of a community
of 62 bottlenose dolphins living in Doubtful Sound, New Zealand. The network was compiled by Lusseau
from seven years of field studies of dolphins, with ties between dolphins pairs being established by observation
of statistically significant frequent association. The two actual communities analyzed by Lusseau are split
up by a dashed line in Fig. 13 and Fig. 14.

BGLL finds five communities in the dolphins network as shown in Fig. 13 (a). In the result, two node,
”Knit” and ”DN63” are misclassified by BGLL. Fig. 13 (b) shows the result generated by CONA based on
the partition of Fig. 13 (a). As is hoped, node ”Knit” and ”DN63” are successfully identified as overlapping
nodes between the two communities split by the dashed line.

Fig.14 (a) shows that Infomap detects seven communities in the dolphins network, and there are some
very small communities in the results. A small community containing node ”PL”, ”Knit” and ”DN63” is
on the border of the two real communities. Regardless of which side it is divided to, there will be some
misclassified nodes. CONA fixes the result through identifying them as overlapping nodes, as shown in
Fig. 14 (b). Although node ”SN89” is misclassified to the other community by CONA, it is hard to say
which community it should belong to. Because node ”SN89” has only two links connecting to different
communities.

Through the above experiments on small networks, we can conclude that CONA can not only identify
overlapping nodes between communities, but correct some mistakes made by non-overlapping community
detection algorithms.

3.3.2. Experiments on large real-world networks

Although many methods can solve large data sets as shown in the last subsection, synthetic networks
might not share all the properties of real networks. Here, we will test the method proposed in this paper on
five large real-world networks, and compare the runtime and modularity measures with other four relatively
fast algorithms: GCE, COPRA, LFM and OSLOM.

The Ca-hepPh data set is a collaboration network from the e-print arXiv and covers scientific collab-
orations between authors of papers submitted to the High Energy Physics - Phenomenology category [26].
The network contains 12,008 nodes and 237,010 edges. Table 3 shows the results of various methods for
this network. CONA gives the best results in terms of quality out of all the methods. Although LFM takes
as little time as BGLL-CONA, it can only produce communities with low modularity. Other methods only
detects communities of middling quality with costing more time than CONA.

The Enron email communication network covers all the email communications within a data set of
around a half million emails [27]. The nodes of the network are email addresses, and there is an edge

15



Table 4: Experimental results on Enron network.

algorithms time Qov EQ
BGLL-CONA 4.51s 0.74 0.559
BGLL-RCONA 2.59s 0.579 0.421
Infomap-CONA 27.78s 0.558 0.535
Infomap-RCONA 25.01s 0.35 0.325

GCE 348s 0.38 0.397
COPRA 11.8s 0.704 0.315
LFM 8.64s 0.196 0.196

OSLOM 342.22s 0.274 0.294

Table 5: Experimental results for the Facebook network.

algorithms time Qov EQ
BGLL-CONA 20.76s 0.773 0.589
BGLL-RCONA 8.2s 0.593 0.426
Infomap-CONA 232.1s 0.514 0.502
Infomap-RCONA 207s 0.306 0.289

GCE 4,057s 0.272 0.298
COPRA 101.7s 0.797 0.558
LFM 59.4s 0.076 0.077

OSLOM 1029.1s 0.428 0.365

between two nodes if at least one email exists between them. Lastly, this network consists of 36,692 nodes
and 367,662 edges. In Table 4, we compare the results of CONA and other methods for the Enron email
network. BGLL-CONA finds the best result with the least time. GCE and OSLOM attain relatively low
score of modularity with costing much more time than other methods. Both COPRA and LFM cost about
10 seconds, but LFM only gives very poor results and COPRA gets two different results on Qov and EQ,
respectively. On Qov , COPRA gets the second best result, whereas on EQ it gets the second worst result.

The Facebook data set [28] is a user-to-user friendship network from the Facebook New Orleans net-
works. It contains 63,731 nodes and 817,090 undirected edges. The results on this network are shown in
Table 5. BGLL-CONA produces almost the best result, which is similar to that of COPRA, whereas only
using one fifth of time of COPRA. GCE takes the longest time and only gives poor result. Although LFM
runs comparatively fast, the quality of its result is very low. The runtime of Infomap-CONA on this data
set is a bit long, whereas the quality of the result is not bad.

The Web-stanford [29] is a data set of webpages and hyperlinks between webpages from Stanford
University. The directed network has been symmetrized, and loops have been removed. The original network
has been transformed into a network with 281,903 nodes and 1,992,636 undirected edges. As shown in Table

Table 6: Experimental results for the Stanford network.

algorithms time Qov EQ
BGLL-CONA 225.3s 0.977 0.925
BGLL-RCONA 220.4s 0.651 0.624
Infomap-CONA 609.3s 0.894 0.865
Infomap-RCONA 593.9s 0.756 0.736

GCE > 24h – –
COPRA 440.95s 0.397 0.397
LFM 2,383s 0.28 0.28

OSLOM 16823s 0.59 0.597
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Table 7: Experimental results for the mobile network.

algorithms time Qov EQ
BGLL-CONA 387.9s 0.587 0.499
BGLL-RCONA 89.5s 0.401 0.321
Infomap-CONA 18,991s 0.361 0.38
Infomap-RCONA 18,732s 0.212 0.21

GCE 2,541s 0.101 0.141
COPRA 404.9 0.036 0.013
LFM 4,736s 0.047 0.053

OSLOM 9138.8s 0.205 0.21

Table 8: Results for huge real-world networks. no stands for the number of overlapping nodes. avm stands for the average
number of memberships. nc stands for the number of communities. avsc stands for the average size of communities.

networks algorithms time no avm nc avsc
Youtube BGLL-CONA 2366.5s 98736 1.096 10553 118.2
Youtube OSLOM 71142s 2756 1.003 20246 15.7
Youtube COPRA 2,302s 9011 1.008 12393 56.1
As-skitter BGLL-CONA 905.9s 71815 1.044 2531 699.9
Flickr BGLL-CONA 16329.3s 231685 1.145 45527 43.15

Livejournal-1 BGLL-CONA 24150.8s 580466 1.139 8515 648.26

6, CONA gives the best results. BGLL-CONA takes the least time to achieve the best modularity. Although
COPRA runs slightly faster than Infomap-CONA, it only detects low quality communities. Again, LFM
produces a poor-quality result. OSLOM gets results with middling quality on overlap modularity, while it
takes too much time. For this network, GCE cannot finish within one day.

We obtained an anonymous call relation data set for a small town from one of the largest mobile commu-
nication service providers in China. This mobile social network contains 348,808 users that are identified
by a random unique number and 3,644,779 call relations between them, which are collected and summed
over one month. As shown in Table 7, BGLL-CONA gives the best results both for speed and quality.
Infomap-CONA gives the second-best result for quality taking several hours. All other methods can only
produce results with very small score on modularity.

3.3.3. Experiments on huge real-world networks

Here, we also challenge these methods using four huge real-world networks. The Youtube data set [30]
is a friendship network that contains 1,138,499 users and 2,990,443 relations between the users. The As-
skitter data set [27] is a large-scale Internet topology graph with 1,696,415 nodes and 11,095,298 edges. The
Flickr friendship network [30] contains 1,715,255 nodes and 15,555,041 edges. The Livejournal network [29]
contains 4,847,571 nodes and 43,110,428 edges.

On these huge networks, most current methods do not work. Table 8 lists the successful records, among
which only two records are generated by other methods. CONA can solve all these four huge networks in
one day. Since the computataional complexity of overlap modulariy is too high for huge networks, here we
give some other statistics, such as no, representing the number of overlapping nodes, avm, representing the
average number of memberships, nc, standing for the number of communities and avsc, which stands for
the average size of communities. From the results on Youtube dataset generated by the three algorithms, we
find that CONA detects much more overlapping nodes than COPRA and OSLOM. The result generated by
CONA has larger average number of memberships and larger average size of communities. Since the average
size of communities of the result generated by COPRA is comparatively small, it detects more communities
than other algorithms.

All the above results show that CONA offers a considerable speed advantage, especially for huge real-
world networks. At the same time, the quality of overlapping communities produced by CONA is always at
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least similar, or even better than those of other methods.

4. CONCLUSIONS

In this paper, we presented an efficient algorithm, CONA, to detect overlapping communities in large-
scale networks starting from a high quality partition. Based on the deduced conditions for overlapping
nodes, the proposed algorithm identifies overlapping nodes from the boundary and inner node set in turn.
On the aspect of quality, CONA can always give better results than the other algorithms used in this paper.
On the aspect of speed, the proposed method performs very well, especially for huge real-world networks.

An advantage of CONA is that it is easy to extend to weighted networks by replacing degree with sum of
link-weights. In addition, the algorithm is highly amenable to parallel implementation because discovering
overlapping nodes between communities of different pairs is completely independent.

From the results in Table. 8, we can find that there is almost no method that can detect highly overlapping
communities in very large networks. GCE algorithm is good at detecting highly overlapping communities,
while it can not process very large real-world networks. Therefore, detecting highly overlapping communities
in very large real-world networks is still a hard problem to be solved in the future work.
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